Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 953
Filtrar
1.
J Neurol Sci ; 459: 122970, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520940

RESUMO

BACKGROUND: Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to involuntary postures or repetitive movements. Genetic mutations are being increasingly recognized as a cause of dystonia. Deep brain stimulation (DBS) is one of the limited treatment options available. However, there are varying reports on its efficacy in genetic dystonias. This systematic review of the characteristics of genetic dystonias treated with DBS and their outcomes aims to aid in the evaluation of eligibility for such treatment. METHODS: We performed a PUBMED search of all papers related to genetic dystonias and DBS up until April 2022. In addition to performing a systematic review, we also performed a meta-analysis to assess the role of the mutation on DBS response. We included cases that had a confirmed genetic mutation and DBS along with pre-and post-operative BFMDRS. RESULTS: Ninety-one reports met our inclusion criteria and from them, 235 cases were analyzed. Based on our analysis DYT-TOR1A dystonia had the best evidence for DBS response and Rapid-Onset Dystonia Parkinsonism was among the least responsive to DBS. CONCLUSION: While our report supports the role of genetics in DBS selection and response, it is limited by the rarity of the individual genetic conditions, the reliance on case reports and case series, and the limited ability to obtain genetic testing on a large scale in real-time as opposed to retrospectively as in many cases.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distonia/terapia , Estudos Retrospectivos , Resultado do Tratamento , Distúrbios Distônicos/genética , Distúrbios Distônicos/terapia , Globo Pálido , Chaperonas Moleculares
2.
Pediatr Neurol ; 154: 66-69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547557

RESUMO

BACKGROUND: GTP-cyclohydrolase 1-deficient dopa-responsive dystonia (GTPCH1-deficient DRD) typically presents in childhood with dystonic posture of the lower extremities, gait impairment, and a significant response to levodopa. We performed three-dimensional gait analysis (3DGA) to quantitatively assess the gait characteristics and changes associated with levodopa treatment in patients with GTPCH1-deficient DRD. METHODS: Three levodopa-treated patients with GTPCH1-deficient DRD underwent 3DGA twice, longitudinally. Changes were evaluated for cadence; gait speed; step length; gait deviation index; kinematic data of the pelvis, hip, knee, and ankle joints; and foot progression angle. RESULTS: Levodopa treatment increased the cadence and gait speed in one of three patients and increased the gait deviation index in two of three patients. The kinematic data for each joint exhibited different characteristics, with some improvement observed in each of the three patients. There was consistent marked improvement in the abnormal foot progression angle; one patient had excessive external rotation of one foot, another had excessive bilateral internal rotation, and the other had excessive internal rotation of one foot and excessive external rotation of the opposite foot, all of which improved. CONCLUSION: The 3DGA findings demonstrate that the gait pathology and recovery process in GTPCH1-deficient DRD vary from case to case. Changes in the foot progression angle and gait deviation index can enable the effects of treatment to be more easily evaluated.


Assuntos
Distúrbios Distônicos , Levodopa , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , GTP Cicloidrolase/genética , Análise da Marcha , Distúrbios Distônicos/tratamento farmacológico , Distúrbios Distônicos/genética , Biomarcadores
5.
J Med Genet ; 61(5): 443-451, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458754

RESUMO

BACKGROUND: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied. The purpose of this study is to discover the genetic basis of dystonia in a clinically and genetically well-characterised dystonia cohort from Turkey, which harbours poorly studied populations. METHODS: Exome sequencing analysis was performed in 42 Turkish dystonia families. Using co-expression network (CEN) analysis, identified candidate genes were interrogated for the networks including known dystonia-associated genes and genes further associated with the protein-protein interaction, animal model-based characteristics and clinical findings. RESULTS: We identified potentially disease-causing variants in the established dystonia genes (PRKRA, SGCE, KMT2B, SLC2A1, GCH1, THAP1, HPCA, TSPOAP1, AOPEP; n=11 families (26%)), in the uncommon forms of dystonia-associated genes (PCCB, CACNA1A, ALDH5A1, PRKN; n=4 families (10%)) and in the candidate genes prioritised based on the pathogenicity of the variants and CEN-based analyses (n=11 families (21%)). The diagnostic yield was found to be 36%. Several pathways and gene ontologies implicated in immune system, transcription, metabolic pathways, endosomal-lysosomal and neurodevelopmental mechanisms were over-represented in our CEN analysis. CONCLUSIONS: Here, using a structured approach, we have characterised a clinically and genetically well-defined dystonia cohort from Turkey, where dystonia has not been widely studied, and provided an uncovered genetic basis, which will facilitate diagnostic dystonia research.


Assuntos
Distonia , Distúrbios Distônicos , Animais , Humanos , Distonia/genética , Distonia/diagnóstico , Distúrbios Distônicos/genética , Distúrbios Distônicos/diagnóstico , Testes Genéticos , Turquia , Biologia Molecular , Mutação , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
6.
Neurobiol Dis ; 194: 106462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442845

RESUMO

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Fenofibrato , Ratos , Animais , Distonia/genética , Distonia/metabolismo , Roedores/metabolismo , Fluordesoxiglucose F18 , PPAR alfa/metabolismo , Distúrbios Distônicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucose
7.
Neurobiol Dis ; 193: 106453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402912

RESUMO

DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.


Assuntos
Distonia , Distúrbios Distônicos , Camundongos , Animais , Distonia/genética , Interação Gene-Ambiente , Distúrbios Distônicos/genética , Corpo Estriado/metabolismo , Predisposição Genética para Doença
8.
Sci Rep ; 14(1): 2975, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316835

RESUMO

Two Jack-Russell Terrier × Chihuahua mixed-breed littermates with Leigh syndrome were investigated. The dogs presented with progressive ataxia, dystonia, and increased lactate levels. Brain MRI showed characteristic bilateral symmetrical T2 hyperintense lesions, histologically representing encephalomalacia. Muscle histopathology revealed accumulation of mitochondria. Whole genome sequencing identified a missense variant in a gene associated with human Leigh syndrome, NDUFS7:c.535G > A or p.(Val179Met). The genotypes at the variant co-segregated with the phenotype in the investigated litter as expected for a monogenic autosomal recessive mode of inheritance. We investigated the functional consequences of the missense variant in a Drosophila melanogaster model by expressing recombinant wildtype or mutant canine NDUFS7 in a ubiquitous knockdown model of the fly ortholog ND-20. Neither of the investigated overexpression lines completely rescued the lethality upon knockdown of the endogenous ND-20. However, a partial rescue was found upon overexpression of wildtype NDUFS7, where pupal lethality was moved to later developmental stages, which was not seen upon canine mutant overexpression, thus providing additional evidence for the pathogenicity of the identified variant. Our results show the potential of the fruit fly as a model for canine disease allele validation and establish NDUFS7:p.(Val179Met) as causative variant for the investigated canine Leigh syndrome.


Assuntos
Distúrbios Distônicos , Doença de Leigh , Animais , Cães , Drosophila melanogaster/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/veterinária , Doença de Leigh/genética , Doença de Leigh/veterinária , Mutação de Sentido Incorreto
10.
Ann Clin Transl Neurol ; 11(4): 1063-1066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389300

RESUMO

Parkinsonism-dystonia-2 PKDYS2 is an autosomal-recessive disorder, caused by pathogenic biallelic variants in SLC18A2 which encodes the vesicular monoamine transporter (VMAT2) protein. PKDYS2 is a treatable neurotransmitter disease, and the rate of diagnosis of this disorder has increased significantly with the advance of genomic technologies. Our report highlights a novel pathologic variant in one case and a novel finding on MRI Brain, consisting of a normal symmetrical signal intensity in the dorsal brainstem and pons, and it substantiates the significance of genetic testing in the evaluation of children with developmental delays, which influences clinical decisions to enhance patient outcomes.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos Parkinsonianos , Criança , Humanos , Distonia/genética , Arábia Saudita , Distúrbios Distônicos/genética , Transtornos Parkinsonianos/genética , Testes Genéticos
11.
Mov Disord Clin Pract ; 11(3): 289-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38284143

RESUMO

BACKGROUND: Mutations in ANO3 are a rare cause of autosomal dominant isolated or combined dystonia, mainly presenting in adulthood. CASES: We extensively characterize a new, large ANO3 family with six affected carriers. The proband is a young girl who had suffered from tremor and painful dystonic movements in her right arm since the age of 11 years. She later developed a diffuse dystonic tremor and mild extrapyramidal signs (ie, rigidity and hypodiadochokinesis) in her right arm. She also suffered from psychomotor delay and learning difficulties. Repeated structural and functional neuroimaging were unremarkable. A dystonic tremor was also present in her two sisters. Her paternal aunt, father, and a third older sister presented episodic postural tremor in the arms. The father and one sister also presented learning difficulties. The heterozygous p.G6V variant in ANO3 was identified in all affected subjects. LITERATURE REVIEW: Stratification by age at onset divided ANO3 cases into two major groups, where younger patients displayed a more severe phenotype, probably due to variants near the scrambling domain. CONCLUSIONS: We describe the phenotype of a new ANO3 family and highlight the need for functional studies to explore the impact of ANO3 variants on its phospholipid scrambling activity.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Feminino , Criança , Tremor/diagnóstico , Distúrbios Distônicos/genética , Distonia/genética , Mutação , Fenótipo , Anoctaminas/genética
12.
Eur J Med Genet ; 68: 104917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296034

RESUMO

MECR-related neurologic disorder, also known as mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) or dystonia with optic atrophy and basal ganglia abnormalities in childhood (MIM: #617282), is an autosomal recessive inherited disease characterized by a progressive childhood-onset movement disorder and optic atrophy. Here we report a 19-year-old male, presented with progressive visual failure, nystagmus, and right orbital pain, with no history of movement or eye disorder in his childhood. His visual decline started at age 18 years, whereas nystagmus emerged seven months later. Analysis of whole-exome sequencing (WES) revealed a homozygous recurrent variant (NM_016011.5:c.772C > T, p.Arg258Trp) in MECR. These findings suggest phenotypic heterogeneity in MECR-related neurologic disorder, thus, more relevant case screening, will help to delineate the genotype-phenotype correlation of the MECR gene.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Atrofia Óptica , Adolescente , Humanos , Masculino , Adulto Jovem , Distúrbios Distônicos/genética , Mutação , Atrofia Óptica/genética
13.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214203

RESUMO

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Mutação/genética , Frequência do Gene , Doença de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
14.
Parkinsonism Relat Disord ; 120: 105991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184995

RESUMO

INTRODUCTION: X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder that may result in severe speech impairment. The literature suggests that there are differences in the speech of individuals with XDP and healthy controls. This study aims to examine the motor speech characteristics of the mixed dystonia-parkinsonism phase of XDP. METHOD: We extracted acoustic features representing coordination, consistency, speed, precision, and rate from 26 individuals with XDP and 26 controls using Praat, MATLAB, and R software. Group demographics were compared using descriptive statistics. A one-way analysis of variance (ANOVA) with Tukey's post hoc test was used to test for acoustic differences between the two groups. RESULTS: The XDP group had significantly lower consistency, speed, precision, and rate than controls (p < 0.05). For coordination, the XDP group had a smaller ratio of pause duration during transitions when compared to controls. DISCUSSION: To our knowledge, this study is the first to describe the motor speech characteristics of the mixed dystonia-parkinsonism phase of XDP. The motor speech of mixed dystonia-parkinsonism XDP is similar to prior characterizations of mixed hyperkinetic-hypokinetic dysarthria with noted differences in articulatory coordination, consistency, speed, precision, and rate from healthy controls. Identifying the motor speech components of all three phenotypes of XDP (i.e., dystonia-dominant phase, parkinsonism-dominant phase, and mixed dystonia-parkinsonism phase) is needed to establish markers of speech impairment to track disease progression.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Transtornos Parkinsonianos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Transtornos Parkinsonianos/genética , Disartria
15.
Parkinsonism Relat Disord ; 120: 105986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219528

RESUMO

BACKGROUND: The genetics of dystonia have varied across different ethnicities worldwide. Its significance has become more apparent with the advent of deep brain stimulation. OBJECTIVE: To study the clinico-genetic profile of patients with probable genetic dystonia using whole exome sequencing (WES). METHODS: A prospective, cross-sectional study was conducted from May 2021 to September 2022, enrolling patients with dystonia of presumed genetic etiology for WES. The study compared genetically-determined cases harboring pathogenic/likely-pathogenic variants (P/LP subgroup) with the presumed idiopathic or unsolved cases. RESULTS: We recruited 65 patients (males, 69.2%) whose mean age of onset (AAO) and assessment were 25.0 ± 16.6 and 31.7 ± 15.2 years, respectively. Fifteen had pathogenic/likely-pathogenic variants (yield = 23.1%), 16 (24.6%) had variants of uncertain significance (VUS), 2 were heterozygous carriers while the remaining 32 cases tested negative (presumed idiopathic group). The P/LP subgroup had a significantly younger AAO (16.8 ± 12.3 vs 31.3 ± 17.0 years, p = 0.009), longer duration of illness (10.9 ± 10.3 vs 4.8 ± 4.3 years, p = 0.006), higher prevalence of generalized dystonia (n = 12, 80.0% vs n = 10, 31.3%, p = 0.004), lower-limb onset (n = 5, 33.3% vs n = 1, 3.1%, p = 0.009), higher motor (p = 0.035) and disability scores (p = 0.042). The classical DYT genes with pathogenic/likely pathogenic variants included 3 cases each of TOR1A, and KMT2B, and single cases each of SGCE, EIF2AK2, and VPS16. Non-DYT pathogenic/likely-pathogenic cases included PINK1, PANK2, CTSF, POLG, MICU1, and TSPOAP1. CONCLUSIONS: The yield of WES was 23.1% among cases of probable genetic dystonia. Pathogenic or likely pathogenic variants in TOR1A, KMT2B, and SGCE genes were commoner. The absence of family history emphasizes the importance of accurate assessment of clinical predictors before genetic testing.


Assuntos
Distonia , Distúrbios Distônicos , Masculino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Distonia/genética , Estudos Prospectivos , Estudos Transversais , Perfil Genético , Distúrbios Distônicos/genética , Chaperonas Moleculares/genética
16.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042508

RESUMO

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Humanos , Distonia/genética , Distonia/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteômica , Fator de Transcrição TFIID/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo
18.
Parkinsonism Relat Disord ; 119: 105949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072720

RESUMO

INTRODUCTION: X-linked dystonia-parkinsonism (XDP) is a progressive neurodegenerative disorder that has been studied well in recent years. OBJECTIVES: This scoping review aimed to describe the current state of knowledge about the diagnosis and treatment of XDP, to provide clinicians with a concise and up-to-date overview. METHODS: We conducted a scoping review of pertinent literature on the diagnosis and treatment of XDP using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS: There were 24 articles on diagnostic methods and 20 articles on therapeutic interventions for XDP, with 7 review articles describing both. The detection of the SVA retrotransposon insertion within the TAF1 gene is confirmatory for XDP. Oral medications are marginally effective. Chemodenervation with botulinum toxin is an effective treatment. Pallidal deep brain stimulation (DBS) has been shown to provide significant improvement in the dystonia and quality of life of patients with XDP for a longer time. A less invasive surgical option is the transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS), which has shown promising effects with the limited number of case reports available. CONCLUSION: XDP is a geneti disorder characterized by striatal symptoms and pathology on neuroimaging. No effective oral medications are available for the management of XDP. The use of botulinum toxin is limited by its cost and duration of effects. As of now, pallidal DBS is deemed to be the best option. Another promising option is the tcMRgFUS but still has limited studies on its safety and efficacy in XDP.


Assuntos
Toxinas Botulínicas , Distonia , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/genética , Distúrbios Distônicos/terapia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Qualidade de Vida
19.
J Neurol ; 271(1): 419-430, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750949

RESUMO

BACKGROUND AND OBJECTIVE: Biallelic mutations in the COA7 gene have been associated with spinocerebellar ataxia with axonal neuropathy type 3 (SCAN3), and a notable clinical diversity has been observed. We aim to identify the genetic and phenotypic spectrum of COA7-related disorders. METHODS: We conducted comprehensive genetic analyses on the COA7 gene within a large group of Japanese patients clinically diagnosed with inherited peripheral neuropathy or cerebellar ataxia. RESULTS: In addition to our original report, which involved four patients until 2018, we identified biallelic variants of the COA7 gene in another three unrelated patients, and the variants were c.17A > G (p.D6G), c.115C > T (p.R39W), and c.449G > A (p.C150Y; novel). Patient 1 presented with an infantile-onset generalized dystonia without cerebellar ataxia. Despite experiencing an initial transient positive response to levodopa and deep brain stimulation, he became bedridden by the age of 19. Patient 2 presented with cerebellar ataxia, neuropathy, as well as parkinsonism, and showed a slight improvement upon levodopa administration. Dopamine transporter SPECT showed decreased uptake in the bilateral putamen in both patients. Patient 3 exhibited severe muscle weakness, respiratory failure, and feeding difficulties. A haplotype analysis of the mutation hotspot in Japan, c.17A > G (p.D6G), uncovered a common haplotype block. CONCLUSION: COA7-related disorders typically encompass a spectrum of conditions characterized by a variety of major (cerebellar ataxia and axonal polyneuropathy) and minor (leukoencephalopathy, dystonia, and parkinsonism) symptoms, but may also display a dystonia-predominant phenotype. We propose that COA7 should be considered as a new causative gene for infancy-onset generalized dystonia, and COA7 gene screening is recommended for patients with unexplained dysfunctions of the central and peripheral nervous systems.


Assuntos
Ataxia Cerebelar , Distonia , Distúrbios Distônicos , Transtornos Parkinsonianos , Humanos , Masculino , Ataxia Cerebelar/genética , Distúrbios Distônicos/complicações , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/genética , Levodopa , Mutação/genética , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Fenótipo , Adulto Jovem
20.
Annu Rev Pathol ; 19: 99-131, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37738511

RESUMO

Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Dopamina , Chaperonas Moleculares , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose , Anoctaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...